ZYJ_photo (High resolution)

ZHENG Yuanjin

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

Emerging Electromagnetic-Acoustic Sensing and Imaging for in-vivo Healthcare Monitoring

Traditional electromagnetic sensing technique (e.g. Radar and Lidar) and acoustic imaging technique (e.g. microphone and ultrasound) have gotten wide applications in military, automotive, consumer, medical, and healthcare etc. fields. Emerging Electromagnetic-Acoustic (EMA) technique combines the merits of electromagnetic sensing with acoustic imaging, and goes beyond to fuse the sensors. Continuous health monitoring in hospital and/or home conditions has been of interest to doctors and healthcare practitioners for a long time. Recording of physiological and biopotential variables in real-life conditions could be especially useful in accurate management of chronic disorders or health problems. Physiological and biopotential signals have been used as important indicator of the vital signs of human-kinds, and real-time monitoring can predicate and be preventive to many serious life attacks. Furthermore, real-life long-term monitoring of health could be good measurement of treatment effects at home care, in situations where the subjects live their daily life. In this talk, we will discuss the implementations, functions and limitations of the respective sensors from circuits to systems, and therein to demonstrate their emerging applications. We would thus present in first half session on realization of three types of EMA sensors: (1) Low power phase array radar chips for Synthetic Aperture Radar (SAR) imaging, (2) Thermo-acoustic and magneto-acoustic sensors and (3) Photoacoustics sensing and imaging systems. In the second half of the session we will focus on demonstrating the EMA sensors for in-vivo healthcare monitoring of vital healthcare parameters. Firstly, a micro-radar chip scale sensor will be introduced for remote heart beat and respiration rate monitoring and falling detection. Secondly, a potable photoacoustic sensor is presented for non-invasively measuring blood parameters such as blood oxygen saturation (SO2), blood core temperature, blood Glucose in metabolic disease management. Thirdly a newly developed flexible blood stethoscope sensor will be demonstrated for prediction and diagnose of cardiovascular diseases such as atherosclerosis, stroke and thrombosis etc. The vital important healthcare applications and future development aspects will be briefly envisioned.

berlin, germany, central station
berlin cathedral, building, architecture


Contact Us

Special Thanks

Conference Sponsors

Follow Us!


IEEE websites place cookies on your device to give you the best user experience. By using our websites, you agree to the placement of these cookies. To learn more, read our Privacy Policy.