Herming Chiueh

Wearable and implantable Circuits and Systems for real-time Seizure Detections, Seizure Predictions, and closed-loop methods for seizure suppression in epilepsy

Epilepsy is one of the most common neurological disorder. About 65 million people in the world are affected. Traditional treatments includes antiepileptic drugs or using resection surgery to remove the epileptogenic zone. Many patients still suffer seizures occasionally with above treatments. In recent years, alternative treatments and devices are proposed to investigate and treat epilepsy in addition to pharmacological and surgical treatments. Several prosthesis devices with deep brain stimulation (DBS) or vagus nerve stimulation are becoming popular treatments for epilepsy clients. In this tutorial, real-time methods for seizure detections, seizure predictions and many closed-loop method for seizure suppression in epilepsy will be reviewed and discussed. This tutorial will further focused on above methods that have been verified in circuits and systems that has silicon fabricated or system prototypes for either wearable and implantable devices.

photo Pertijs

Michiel Pertijs

Circuits and Systems for Next-Generation Ultrasound Imaging Devices

Ultrasound imaging is a safe and cost-effective technique for the diagnosis of a wide variety of medical conditions, and for the guidance of treatment. Today, the vast majority of ultrasound scans is made by a trained healthcare professional operating a hand-held probe connected to an imaging system. However, a next generation of smaller and “smarter” ultrasound imaging devices is emerging. Examples include catheters that provide real-time 3D imaging to guide minimally-invasive interventions, and wearable ultrasound devices used by the patient at home for new monitoring and diagnostic applications. Innovations in circuits and systems play an crucial role in realizing these next-generation ultrasound imaging devices, and will be the focus of this tutorial.

The tutorial will start by reviewing of the basics of ultrasound imaging and the architecture of conventional imaging systems. We will highlight the significant changes in system architecture needed to move towards miniatured and wearable 3D imaging devices. Close integration of transducers and integrated circuits is an important enabler for this. Front-end electronics integrated close to the transducer elements can provide local high-voltage pulsing, echo-signal amplification, channel-count reduction, and digitization, paving the way towards probes with fully-digital interfaces that no longer rely on wired connections to an imaging system. The tutorial will illustrate the potential of in-probe electronics by means of examples of state-of-the-art designs featuring transducer-on-CMOS integration and pitch-matched circuits for high-voltage pulsing, beamforming and digitization.


Dr. Sameer Sonkusale

Flexible bioelectronics on thread and textile substrates

This tutorial will explore the new realm of using threads and textile as an ultimate platform for flexible and stretchable bioelectronics. Threads offer unique advantages of universal availability, low cost, material diversity and simple textile-based processing. Interestingly, threads also provide an ideal platform for passive microfluidic sampling and delivery of analytes. In this talk, I will report reel-to-reel fabrication of functional smart threads for variety of sensing and electronics application. I will report on nanomaterial-infused smart threads for sensing strain and temperature. Nano-infused threads will be presented for sensing pH, glucose, lactate, ammonium and other chemical and biological biomarkers directly in biological fluids such as sweat or wound exudate. Beyond sensing and microfluidics, I will present recent progress on making super-thin transistors and electronics directly on thread and textile substrates. This new toolkit of highly flexible thread-based microfluidics, sensors, transistors and electronics makes it possible to realize wearable and implantable sensor platforms for health monitoring and treatment. The tutorial will showcase multiple applications for thread-based flexible biolectronics, such as wearable sweat sensing patches for monitoring metabolic health, smart bandages for treatment of chronic wounds, and smart sutures for detection and treatment of surgical infections. Tutorial will provide a roadmap for this emerging field and relevance to the BioCAS scientific community.

IEEE websites place cookies on your device to give you the best user experience. By using our websites, you agree to the placement of these cookies. To learn more, read our Privacy Policy.